



		DPP – 4	(Waves)			
Video Solution on Website:-		https://phys	csaholics.com/h	ome/courseDetails,	/92	
Video Solution on YouTube:-		https://youtu.be/8zG0mf76t7E				
Written Solut	ion on Website:-	https://physi	csaholics.com/n	ote/notesDetalis/3	8	
Q 1.		ve such that the point)				
Q 2.	The equation for the vil given by $y = 2$ cm sin [((a) 24.6 cm			ng in its third harmonic is he string is (d) 15.7 cm		
Q 3.	The frequency of a sonometer wire is 100 Hz. When the weights producing the tensions are completely immersed in water the frequency becomes 80 Hz and on immersing the weights in a certain liquid the frequency becomes 60 Hz. The specific gravity of the liquid is (a) 1.42 (b) 1.77 (c) 1.82 (d) 1.21					
Q 4.	A string of mass 0.2 kg/m and length $1=0.6$ m is fixed at both ends and stretched such that it has a tension of 80 N. The string vibrates in 3 segments with maximum amplitude of 0.5 cm. The maximum transverse velocity amplitude is: (a) 1.57 m/s (b) 6.28 m/s (c) 3.14 m/s (d) 9.42 m/s					
Q 5.	quarter of its length from	m one end is a point. What will be the fr	of maximum amplitude. equency emitted when i num displacement?	oration for which a point at The frequency of vibration it vibrates in the next mode (d) 300 Hz		
Q 6.	p. It is formed by the su	perposition of two v - kx) and $y_2 = 2a \sin(b_1)$	vaves travelling in oppo ($\omega t + kx$). The total med	ectional area s and density posite directions given by the chanical energy confined (d) $\frac{3s\pi\rho\omega^2a^2}{2k}$		
Q 7.	shown in figure. The the tension. The lowest free	nread goes over a fix equency with which the hed to the right by 1	ed pulley and supports the heavy string resonat 0 cm so that the joint is			

Answer Key

Q.1 b	Q.2 d	Q.3 b	Q.4 a	Q.5 d
Q.6 c	Q.7 c	Q.8 a	Q.9 b	Q.10 d
Q.11 c	Q.12 a	Q.13 d	Q.14 c	Q.15 a

PRATIES ANNOLICS PHYSICS AND PHYSICS